Sherlock Statement of Coverage for:

& ¢ NiftyOptions

Name of Protocol: Nifty Options (by Teller Org, Inc.)

Agreement Start Date: 9/24/2021

Length of Term: 12 months

Coverage Amount: The lesser of $10M or the TVL of Protocol Customer
Deductible Amount: 5k USDC

Frontend location: https://niftyoptions.org/

Claims to be paid in: USDC

Termination Fee: 0 USDC

Defined Terms

Sherlock - Sherlock Protocol
Client - Protocol Customer
SPCC - Sherlock Protocol Claims Committee

Maintaining Active Coverage

Coverage of a Client is only active and valid for as long as the Client has sent more funds
to the Sherlock payment account than is equal to the accumulated premium debt of the
Client. If the Client’s balance of “sent funds” is less than the accumulated premium debt,
the Client is no longer under coverage. The coverage will end at the first block where the
balance of “sent funds” drops below the accumulated premium debt. Sherlock
recommends that Clients keep greater than or equal to one week’s worth of extra
payment in the Sherlock payment account. Even if the Client is not currently under
coverage, an exploit that occurred during a block before the coverage ended is still valid
and Sherlock needs to properly assess and pay out that claim when necessary.

© 2021 SHERLOCK Statement of Coverage | 1

Claim Validity

A Client will bring a possible covered exploit in their protocol to the attention of Sherlock’s
security team. It is likely the security experts at Sherlock in charge of that Client will be
involved in this process of discovering a possible exploit and understanding its nature. If
there's a possibility that the exploit would be covered, the Client will be tasked with
deciding the amount of the claim. It is likely the security experts at Sherlock in charge of
that Client will also be heavily involved in advising the proper amount to create a claim for.

Once a possible exploit and the amount claimed by Client is brought to the attention of
Sherlock, the process of deciding the validity of the claim begins. The first step is to bring
the exploit and amount of the claim to the attention of the Sherlock Protocol Claims
Committee (SPCC). The SPCC is made up of members of the core team of Sherlock as
well as official advisors to Sherlock. These members will be well-versed in the general
nature of exploits and events covered by Sherlock as detailed in this statement of
coverage. This committee will be composed of some of the foremost security experts in
the DeFi space. All of the members of the SPCC will have a stake in Sherlock (likely in the
form of tokens or equity) and will have an interest in doing what is best for the long-term
wellbeing of Sherlock. They will also have reputations and public identities existing
outside of Sherlock that they will want to uphold. These factors will make it very likely that
the members of the SPCC will see it in their best interest to make the most accurate
claims decision possible.

The decision made by the SPCC will be binary (either a claim will be accepted or not).
Once a decision is made on a claim by the SPCC, there are a few possible paths. The first
path for a Client is to accept the decision. The second path is to revise the claim (usually
the amount of the claim) and re-submit. A Client is limited to 3 submissions for each
potential exploit (to be defined by the block number at which the potential exploit began).
The third and last path for the Client is to escalate to arbitration. This would require the
Client to “stake” up to 1% of the claim amount (amount will be decided by the SPCC) to
escalate the claim above the SPCC. The escalation would move the claim decision from
Sherlock’s hands into the hands of UMA's Optimistic Oracle, more specifically UMA's Data
Verification Mechanism. The claims decision will then be voted on by UMA tokenholders
and the resolution of that vote will be the final claim decision (overruling the SPCC). If the
Client is proven correct, then the amount specified by their claim will be paid out. They will
also receive their 1% (or less) stake back in full. If the Client’s escalation proves to be in
vain, then the amount specified by the claim is not paid out and the 1% (or less) stake is
kept by Sherlock.

© 2021 SHERLOCK Statement of Coverage | 2

Sherlock Claims Process

Client proposes a
potential exploit
and Svalueto be ™

reimbursed
l Resubmit
SPCC approvesor P | Client can resubmit, D'SPUte Ot:al\glé gptir?\i;tsicor Deny
denies the proposal dispute or accept deniezpclaim
lApprove lAccept lApprove
Claim is paid Claim not paid Claim is paid Claim not paid

Paying a Claim

If the claims process results in a situation where funds need to be paid out, there are a
few nuances to keep in mind. The default situation is to pay the Client back in the token
specified at the top of this agreement. However, there may be situations where the
Client's smart contracts may still be unstable or compromised. For example, an exploit
could have occurred (which then triggered a payout) but the Client has not fully gained
back control from the malicious party who caused the exploit. In this situation, Sherlock
may pay out to the addresses of affected parties directly, instead of paying out to the
Client. If a Client is deemed to no longer be compromised, it is much faster and more
efficient (and likely more economical to end users) to pay out a claim to the Client directly.
Then the Client can handle reimbursement for end users in a way that the Client sees fit.
However, Sherlock’s mission is to protect end users and keep end users’ money safe, so
Sherlock (through the SPCC) will have sole discretion as to whether a payout should be
made to the Client or to affected users of the Client directly.

© 2021 SHERLOCK Statement of Coverage | 3

Deciding on Claims

When trying to decide if a claim falls under coverage or not, there are three main
questions to ask (which will be explained in detail in the following pages):
1) Was there an unintended loss of user funds due to a flaw/oversight in the
protocol? Basically did an exploit occur?
2) Does this exploit fall into the category of a “Known Economic Risk” explained
below?
3) Does this exploit fall into a category under “Specific Events NOT Covered by
Sherlock” listed below?
If 1) is true, meaning an exploit did occur, and 2) and 3) are false, then it is likely that this
event should be covered and paid out by Sherlock. The reason for approaching the
decision in this manner is that Sherlock provides some possibility for “unknown unknown”
exploits occurring. And if this event is indeed an exploit, but Sherlock has not provided
language around handling it in the letter or spirit of this document (specifically whether it
should NOT be covered), then this new form of exploit should likely be covered by
Sherlock.

The Spirit of Sherlock Exploit Protection

This document will outline in detail all of the areas of coverage by Sherlock against which
claims can be made (or not made). Because there are always bound to be gaps in explicit
wording, Sherlock also attempts to explain the “spirit” of what the later paragraphs will
convey, so that unforeseen exploits can still be handled well.

Known Economic Risks

There are two important categories of coverage at Sherlock. The first is bug-related
coverage. If a smart contract has a syntax error or otherwise fails to execute its logic as
intended due to a mistake related to code being written improperly, that would likely be
considered a bug-related incident. However, if there is still a loss of funds despite the
code being technically correct in what it intended to do (as a third-party would observe),
this would likely fall more in the category of an economic incident. The latter (economic
incidents) are not so much a failure of code or syntax as they are a failure of economic
design. The difference can be subtle and there are definitely gray areas, but generally if
the literal code functions in the way a developer intended, that is likely an economic error.
If the literal code does not function as expected, that is likely a bug-related error.

We can create a quadrant of coverage with four types of errors: unknown bug-related

errors, known bug-related errors, unknown economic errors, and unknown economic
errors. An unknown error is simply something that the developers/auditors are unaware

© 2021 SHERLOCK Statement of Coverage | 4

of (until it surfaces). This means a
common bug (in a known class of
bugs) can still be an unknown bug in
a specific contract because it was not
identified in that contract. Whether a
bug-related error is known or Covered Covered
unknown, an incident related to a
smart contract bug should generally
be covered. The onus is on Sherlock’s
security team to price known bugs
properly or fix them. And unknown
bugs are inherently unforeseeable so
they should be covered. For unknown
economic risks, the sentiment is the
same. Because it was unknown (and
therefore unforeseeable), it should be covered. But known economic risks are a bit
different. Almost every protocol has some set of known economic risks. For example, if
the value of Maker collateral falls below the value of the deposits made into the protocol,
the depositors are at risk of losing funds. Same goes for almost anything related to token
price volatility. If a token price goes down, holders of the token or parties who interact
with that token are at risk of losing funds related to the price drop. These are examples of
known economic risks. Sometimes, these risks are a large part of the reason APYs are so
high for certain opportunities. These are not risks Sherlock intends to cover. The onus is
on the end user to learn about and understand (as well as the protocol to teach) the
known economic risks which drive the APY (or attractiveness, speculative or not) of the
investment opportunity they are considering. Many of these economic risks exist in
traditional finance and have existed for centuries in various markets. Sherlock’s goal is to
mitigate the risks that are uniquely specific to DeFi, especially the risk that code or
economic designs do not function as intended. Therefore Sherlock covers only
bug-related and unknown economic risks because these are the risks that users are not
well-equipped to evaluate themselves.

Bug-related

Unknown Known

Covered Not Covered

Economic

Known Bug-Related Risks

If a developer / team understands the implications of a known bug-related risk, but
deems it an “acceptable risk” for their protocol, it should still be paid out as long as the
team disclosed it to (or at least did not make efforts to conceal it from) the Sherlock
smart contract team. As long as the Sherlock team knows about the “acceptable” risk
around the code, it can be priced properly in Sherlock’s model.

© 2021 SHERLOCK Statement of Coverage | 5

However, if a team makes considerable effort to conceal (or obfuscate) a certain
“acceptable risk” or known risk, Sherlock may have grounds to not pay out. This clause
exists mainly to disincentivize protocol teams from concealing as many
bugs/vulnerabilities as they can from the Sherlock smart contract team in order to get a
lower rate for coverage.

With that in mind, Sherlock attempts to enumerate, in as clear terms as possible, the
events that will or will not be covered by Sherlock coverage:

Specific Events NOT Covered by Sherlock

Token Price

Any event that is triggered by a change in token price should almost certainly not be
covered by Sherlock. Any protocol should know exactly which tokens it could have the
opportunity to interact with. And any protocol should have contingencies in their code for
the price of all of these tokens dropping to zero or approaching infinity. The volatility of a
token price is a perfect example of a “known economic risk” as recounted in the
preceding section. This extends to “stablecoins” as well. However, attacks using flash
loans and/or oracle manipulation are more sophisticated (but also result in large changes
to a token'’s price) and so these types of events should usually be covered, despite a
change in token price occurring as well.

Changes in token price especially apply on the user side. The risk of a token’s price going
down (or up in the case of short-selling) should always be considered a known risk and
thus, unless there was some sophisticated manipulation accompanying it, a loss of funds
caused by a change in the price of a token alone should not be a claimable event.

Collateral Shortfalls

This section is especially applicable to lending protocols and related protocols. Any
lending protocol is well aware that one of the known economic risks is a shortfall in
collateral, which would leave depositors unable to collect some of all of their principal. Of
course, these collateral shortfalls could be caused by a bug in a smart contract, in which
case Sherlock should cover the event. But a common, known economic risk of lending
protocols is collateral shortfalls related to rapid and/or large changes in the price of
tokens being used as collateral. This type of collateral shortfall would not be covered by
Sherlock.

© 2021 SHERLOCK Statement of Coverage | 6

Unavailability of Funds

This section is especially applicable to lending protocols and related protocols. There
may be situations where a depositor’s tokens are not available to be withdrawn due to
high utilization (on the borrowing side) of the depositor’s tokens. This is a known
economic risk related to lending protocols and thus would not be covered.

Approve Max / Approve Unlimited

The expectation for protocols covered by Sherlock is that they should discourage (or
prevent) approving amounts (of tokens) to a contract above and beyond what is
necessary for a specific transaction. Sometimes, it is not possible to entirely prevent this
in the smart contracts, but it should at least be made impossible through the covered
protocol's sponsored frontend/Ul. Sherlock’s goal is to protect end-users who may not be
sophisticated users of crypto. Any user who goes against the recommendation of the
sponsored Ul and approves unlimited anyways can be thought of as a sophisticated user
according to Sherlock. Users who approve more than they need for a specific transaction
and then experience an exploit which drains funds held in their wallet (not at the covered
protocol) will not be covered by Sherlock. To be clear, the user’s funds that were in the
protocol and lost due to an exploit would be reimbursed. Any funds taken from the user’s
wallet due to an exorbitantly high approval value will not be reimbursed by Sherlock.

Phishing attacks

Users affected by phishing attacks related to their wallet (Metamask, etc.) would not be
covered by a specific protocol's policy. Even if the tokens involved were tokens related to
or distributed by a specific protocol that has a policy with Sherlock.

Phishing attacks related to “fake” websites (i.e. websites hosted at domains other than
the protocol's sponsored website/app) would also not be covered. The onus is on the
user to ensure they are actually interacting with a covered protocol, not a duplicate,
replica, or look-alike website or protocol.

Phishing attacks spawning from a covered protocol's sponsored website/app are also not
covered (such as hijacking a DApp’s DNS). Sherlock currently does not have the resources
to ensure and monitor the security of website / frontend-related vulnerabilities, but this
may change in the future. If getting coverage for this kind of attack is very high priority for
a protocol team, we ask that the team to reach out to us.

© 2021 SHERLOCK Statement of Coverage | 7

Front-end bugs

In the same vein as phishing attacks, Sherlock currently does not have the resources to
ensure and monitor the security of website / frontend-related vulnerabilities, but this may
change in the future. So Sherlock cannot cover any unintended loss of funds resulting
from an exploit/bug in the frontend of a protocol customer. This means that code related
to libraries like Web3.js or Ethers.js cannot be covered even if it is interacting with smart
contracts. The code covered must be deployed on a blockchain and frontend code does
not meet this criteria.

Transaction Ordering Attacks / Frontrunning / Sandwich Attacks / MEV-Related
Attacks

These types of attacks involve malicious addresses (often controlled by bots) that spot
profitable transactions in the mempool and then execute the transaction themselves in
order to capture the profit. Or the malicious address sees a certain state change that will
be caused by a transaction in the mempool, and calls a function or executes a transaction
to take advantage of that state change. The biggest reason that Sherlock cannot cover
these types of attacks is because the potential for fraud is too high. If a user or protocol
“loses” funds because their transaction is front-run in the mempool, it is very difficult for
Sherlock to know that the address doing the frontrunning is not also controlled by the
same user or protocol.

However, in certain cases, these types of events would be covered by Sherlock. If, for
whatever reason, a protocol tries to pass private or randomness-reliant information
through the mempool, this should be covered by Sherlock (see “Specific Known
Bug-Related Attacks” below) because the Sherlock security team should catch these
types of bugs and in those cases it is fairly clear that unsound logic was being used in the
code. In other cases, it's not always clear what the intentions of the developers were and
therefore Sherlock cannot cover those cases.

Another area where this would be covered is simply bad logic in the protocol which
doesn't check for certain conditions. The specific example here is the ERC20 approve
race-condition exploit.

Rug Pulls / Admin Rights / Off-limits functionality

The unauthorized accessing of any function or contract where access is white-listed or
entirely disallowed is NOT covered. Sherlock strongly recommends multi-signature admin
functionality for all accounts and admin contracts.

© 2021 SHERLOCK Statement of Coverage | 8

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

The risk of funds being lost in a single signature setup is too high for Sherlock to cover.
And in a multi-signature setup, the preponderance of evidence related to a loss of funds
points to a rug pull, which is a situation Sherlock does not intend to cover. Therefore
Sherlock cannot cover ANY “admin’-related exploits. Sherlock is not able to accurately
assess these types of exploits currently and so the price of premiums would be far too
high if these risks were covered by Sherlock. Sherlock is working to expand its coverage
in this area. But for now, any exploit related to privileged access (without an
accompanying covered exploit), will not be covered by Sherlock.

This also applies to any governance-induced loss of funds. If a majority of token holders
decides to vote maliciously in any way, that cannot be covered. For example, if a majority
of token holders decide to transfer a minority’s share of tokens to themselves, this would
not be covered. And if a malicious party somehow acquires enough tokens to make a
malicious change through governance, this also should not be covered.

Note: A bug related to a missing (or incorrect) access control check (such as a missing
modifier) would be covered. This is a mistake in the code, not a “rug pull” necessarily.

Specific Events That Should Not Be Relied on for Decisions

Flash Loan

A flash loan by itself is simply a way to acquire more tokens. Any attack that can be
accomplished with a flash loan can also be accomplished without a flash loan (by a
whale, etc.). Therefore, the presence of a flash loan does not necessarily mean that an
exploit has occurred. However, flash loans are often accompanied by other events (oracle
manipulation, etc.) which are exploits. And, of course, if a flash loan is a part of a broader
unknown economic attack, then the event should be covered. If the flash loan is simply
taking advantage of a known economic attack (liquidation may occur if a token price
drops), then it would not be covered by Sherlock. The presence of flash loans by
themselves in a potential exploit event are not good indicators of whether an event should
be covered or not.

Specific Events Covered by Sherlock

Oracle Manipulation

Although oracle manipulations should be fairly “known” economic risks by now, this type
of exploit is so new (and somewhat technical) that, in most cases, Sherlock still considers

© 2021 SHERLOCK Statement of Coverage | 9

unexpected oracle behavior to be an “unknown economic risk” to end users and protocol
developers. However, Sherlock security experts are well aware of this risk, so it should be
priced properly with the knowledge that it will usually be a covered event at Sherlock. The
industry seems to be learning its lesson and moving away from “spot price” oracles to
time-weighted average price oracles but exceptions still exist. Events where the oracle (or
collection of oracles) actually gives an incorrect price should definitely be covered,
assuming losses are sustained. And although they are more foreseeable, events where a
malicious party “leans on the scale” in order to manipulate a certain oracle should also be
covered.

Specific Known “Bug-related” Attacks

Integer underflow/overflow

Reentrancy including cross-function reentrancy

Silent failing sends / unchecked sends / unchecked low-level calls / delegatecall to
untrusted callee

Unbound loops

Self-destruct-related exploits / forcibly sending Ether to a contract

Absence of required participants

Denial-of-service due to fallback function, gas limit reached, unexpected throw,
unexpected kill

False randomness / reliance on “private” information being sent through the
mempool

Time manipulation / timestamp dependence

Short address attacks

Insufficient gas griefing

Authorization through tx.origin

Uninitialized storage pointer

Floating pragma / outdated compiler version / compiler-related bugs
Missing checks / callable initialization function

Missing variables / using the wrong variable

Proxy/upgradability-related attacks (such as the OpenZeppelin UUPS bug)
External dependencies (such as OpenZeppelin libraries)

Known “bug-related” attacks not listed here

The list of specific, known bug-related attacks above is surely incomplete, but is provided
mainly for convenience. Any attack that can be classified as bug-related but is not listed
under “Specific Events NOT Covered By Sherlock” should inherently be covered by
Sherlock.

© 2021 SHERLOCK Statement of Coverage | 10

https://consensys.github.io/smart-contract-best-practices/known_attacks/#cross-function-reentrancy
https://consensys.github.io/smart-contract-best-practices/known_attacks/#insufficient-gas-griefing
https://cwe.mitre.org/data/definitions/824.html
https://geeksg.medium.com/my-journey-to-disclosing-a-vulnerability-that-can-lock-up-millions-in-ethereum-dcb5754ad9bc

Events that Combine Different Attacks

Many exploits combine multiple types of events to disrupt a protocol. As long as just one
of the events in the combined attack is determined to be covered by Sherlock, then the
entire aggregated attack should be covered.

Attributes Specific to Client

Test Suite

Test coverage: Good
Quality of tests: High

Best Practices

Proper formatting: Yes
Readability: High
Commenting: Good

Composition

Size of Codebase: Very small
Code Complexity: Low

Composability

Composability with other protocols: None
Use of oracles: None

Blockchains
Blockchain: Ethereum
Multi-chain: No

L2s: No

Libraries/Contracts

Upgradeable: Yes

Use of battle-tested libraries where possible: Yes

Tokens used: WETH

External contracts/interfaces used: IERC721 (OpenZeppelin), IERC721Metadata
(OpenZeppelin), IERC1155 (OpenZeppelin), IERC1155MetadataURI (OpenZeppelin),
IERC721ReceiverUpgradeable (OpenZeppelin), IERC1155ReceiverUpgradeable
(OpenZeppelin), IERC20 (OpenZeppelin), SafeERC20 (OpenZeppelin), ERC721Upgradeable

© 2021 SHERLOCK Statement of Coverage | 11

(OpenZeppelin), Initializable (OpenZeppelin), OwnableUpgradeable (OpenZeppelin),
Strings (OpenZeppelin)

Security Suggestions Made to Client

Lead Security Expert: Janbro
Support team: Evert Kors

Contracts reviewed:
e Teller-Options-Master-Repo/packages/hardhat/contracts/Option.sol
e Teller-Options-Master-Repo/packages/hardhat/contracts/OptionURIFetcher.sol

Commit hash:
e 58daac0c15a6531689d46493747dcd9becbb80a0

Total Suggestions: 9

Critical: 0
High: 3
Medium: 1
Low: 2
Note: 3

ISSUE 1

Summary
line 155:

function cancelOption(uint256 optionId) public onlyOptionOwner(optionId) {

cancelOption does not return option creators incentiveAmountWei when option is
cancelled in undefined state (before the option is filled).

Risk Rating

Medium

Vulnerability Details

If a user calls createOption with a non zero msg.value, that amount will be locked in the
contract if the option is cancelled before it is filled.

© 2021 SHERLOCK Statement of Coverage | 12

Impact
Locked funds

Tools Used

Manual code review

Recommended Mitigation Steps

Refund the opt.incentiveAmountWei when the option is cancelled in the undefined state

if (originalStatus == OptionStatus.undefined) {
// Refund opt.incentiveAmountWei
payable(ownerOf(optionId)).transfer(
opt.incentiveAmountWei

)5
}

Mitigated by client

Yes, the ‘incentiveAmountWei' variable is renamed to "premiumAmountWei" and returned
to the option creator in WETH.

ISSUE 2

Summary
line 285:

" _transferOptionBundle(optionId, opt.optionFiller);"

When “exerciseOption’ is called, the token bundle is transferred to the “optionFiller".
According to ERC1155 standard, ‘safeTransferFrom' calls the ‘onERC1155Received’ of the
receiver if it is a contract.

Risk Rating
High
Vulnerability Details

This puts execution flow into the receiver and allows a malicious receiver to revert in their
"onERC1155Received” function, causing a DOS on the exerciseOption function. This could
allow a “optionFiller" to revert if the underlying token bundle decreases in price below the
option "buyoutPriceWei" until they are able to expire the option and withdraw their WETH.

Impact

© 2021 SHERLOCK Statement of Coverage | 13

The option creator would not be able to exercise their option.

Tools Used

Manual Code Review

Recommended Mitigation Steps

A pull pattern should be utilized for option fillers to receive their token bundle after an
option is exercised.

Mitigated by client

Yes, WETH is being used instead of native ETH, this mitigates the issue as reverts can not be
triggered on the receival of WETH.

ISSUE 3

Summary
line 209:

function expireOption(uint256 optionId) public {

payable(opt.optionFiller).transfer(
opt.buyoutPricelei

)5
}

Option can be prevented from expiring and therefore lock NFTs by opt.optionFiller
reverting in fallback payable function.

Risk Rating
High
Vulnerability Details

An option owner can be prevented from expiring their option and receiving their token
bundle if the option filler implements a fallback payable function and reverts. This means a
option filler can hold an option creators token bundle hostage with a smart contract.

Impact

Option creators token bundle is locked in the contract

© 2021 SHERLOCK Statement of Coverage | 14

Proof of Concept
pragma solidity 0.6.12;

import './Option.sol';

contract Ransom {
bool internal ransomEnabled = true;
address internal optionContract;

constructor(address _optionContract) public {
optionContract = optionContract;

}

function fillOption(uint256 optionId) public payable {
optContract = Option(optionContract);
optContract.fillOption(optionId).value(msg.value);

}

function unlockNFT() public payable {
if(msg.value >= 1 ether) {
ransomEnabled = false;

}
}

fallback() external payable {
require(!ransomEnabled);

}
}

Tools Used

Manual code review

Recommended mitigation

Use pull payment rather than push payment pattern
Mitigated by client

Yes, WETH is being used instead of native ETH, this mitigates the issue as reverts can not be
triggered on the receival of WETH.

© 2021 SHERLOCK Statement of Coverage | 15

ISSUE 4

Summary
line 170:

function cancelOption(uint256 optionId) public onlyOptionOwner(optionId) {

payable(opt.optionFiller).transfer(
opt.buyoutPricelei

)5
}

Option can be prevented from being cancelled and therefore lock NFTs by opt.optionFiller
reverting in fallback payable function.

Risk Rating
High
Vulnerability Details

An option owner can be prevented from cancelling their option and receiving their token
bundle if the option filler implements a fallback payable function and reverts. This means a
option filler can hold an option creators token bundle hostage with a smart contract.

Impact

Option creators token bundle is locked in the contract

Proof of Concept

pragma solidity 0.6.12;
import './Option.sol’;

contract Ransom {
bool internal ransomEnabled = true;
address internal optionContract;

constructor(address _optionContract) public {
optionContract = optionContract;
}

function fillOption(uint256 optionId) public payable {
optContract = Option(optionContract);
optContract.fillOption(optionId).value(msg.value);

© 2021 SHERLOCK Statement of Coverage | 16

function unlockNFT() public payable {
if(msg.value >= 1 ether) {
ransomEnabled = false;

}
}

fallback() external payable {
require(!ransomEnabled);

}
}

Tools Used

Manual code review

Recommended mitigation
Use pull payment rather than push payment pattern
Mitigated by client

Yes, WETH is being used instead of native ETH, this mitigates the issue as reverts can not be
triggered on the receival of WETH.

ISSUE 5

Summary

line 170:
payable(opt.optionFiller).transfer(
line 209:

payable(opt.optionFiller).transfer(

line 249:
payable(_msgSender()).transfer(opt.incentiveAmountiei);
line 280:

payable(ownerOf(optionlId)).transfer(

Gas costs are subject to change and can cause .transfer() to fail in the future. Additionally,
there are better methods to prevent reentrancy such as reentrant guards or to utilize the
checks-effects-interactions pattern.

© 2021 SHERLOCK Statement of Coverage | 17

Risk Rating

Low

Vulnerability Details
.call.value(...) should be used instead of .transfer(...) or .send(...).

https://consensys.net/diligence/blog/2019/09 /stop-using-soliditys-transfer-now/

Impact

.transfer() could fail in the future if gas costs are updated.

Tools Used

Manual Code Review

Recommended Mitigation Steps

Utilize low level .call{value: amount }()
Mitigated by client

Yes, WETH is being used instead of native ETH, this mitigates the issue.

ISSUE 6

Summary
line 134:

opt.buyoutPriceWei = buyoutPricelWei;
opt.incentiveAmountWei = msg.value;

If opt.buyoutPriceWei is less than opt.incentiveAmountWei, a user can fill an option for a
net positive amount of ETH with no regard for the option.

Risk Rating

Low

Impact

A user could create an unfavorable option.

© 2021 SHERLOCK Statement of Coverage | 18

Tools Used

Manual code review

Recommended Mitigation Steps

Ensure opt.buyoutPriceWei > opt.incentiveAmounthei
eg.

line 125:

require(buyoutPriceWei > msg.value);

Mitigated by client

Yes

ISSUE 7

Summary
line 33:

enum OptionStatus {
undefined,
filled,
exercised,
cancelled

}

undefined is a risky and undescriptive name for OptionStatus state.

Risk Rating

Note

Impact
Readability

Tools Used

Manual code review

Recommended Mitigation Steps

Rename to open

© 2021 SHERLOCK

Statement of Coverage | 19

Mitigated by client
Yes

ISSUE 8

Summary
line 44:

// TODO: support ERC20

line 169:

// TODO: change buyout token from ETH to WETH (ERC20)
line 208:

// TODO: change buyout token from ETH to WETH (ERC20)
line 247:

// TODO: change buyout token from ETH to WETH (ERC20)

Implement TODO functionality or remove comments

Risk Rating

Note

Impact
Readability

Tools Used

Manual code review

Recommended Mitigation Steps

Implement TODO functionality or remove comments
Mitigated by client

Yes

© 2021 SHERLOCK Statement of Coverage | 20

ISSUE 9

Summary
line 91:

function bundleOf(uint256 optionId) public view returns (TokenBundle memory)

{
line 119:

createOption(Option.TokenBundle,uint256,uint32) public payable returns
(uint256 optionId_) {

line 155:

function cancelOption(uint256 optionId) public onlyOptionOwner(optionId) {
line 189:

function expireOption(uint256 optionId) public {

line 228:

function fillOption(uint256 optionId) public payable {

line 264:

function exerciseOption(uint256 optionId) public onlyOptionOwner(optionId) {

Public functions can be declared external

Risk Rating

Note

Impact

Increased gas usage

Tools Used

Manual code review

Recommended Mitigation Steps

Declare functions which do not need to be called internally as external
Mitigated by client

Yes

© 2021 SHERLOCK Statement of Coverage | 21

